A fast multipole method for the evaluation of elastostatic fields in a half-space with zero normal stress
نویسندگان
چکیده
In this paper, we present a fast multipole method (FMM) for the half-space Green’s function in a homogeneous elastic half-space subject to zero normal stress, for which an explicit solution was given by Mindlin (1936). The image structure of this Green’s function is unbounded, so that standard outgoing representations are not easily available. We introduce two such representations here, one involving an expansion in plane waves and one involving a modified multipole expansion. Both play a role in the FMM implementation.
منابع مشابه
Elastostatic computations on aggregates of grains with sharp interfaces, corners, and triple-junctions
We present a fast algorithm for the calculation of elastostatic fields in twodimensional assemblies of elastic grains, separated by sharp grain boundaries. The algorithm uses an integral equation approach, combined with the fast multipole method and recursive compression to resolve stress concentrations also very close to grain boundary junctions. Singular basis functions on analytic form are n...
متن کاملElzaki transform method for finding solutions to two-dimensional elasticity problems in polar coordinates formulated using Airy stress functions
In this paper, the Elzaki transform method is used for solving two-dimensional (2D) elasticity problems in plane polar coordinates. Airy stress function was used to express the stress compatibility equation as a biharmonic equation. Elzaki transform was applied with respect to the radial coordinate to a modified form of the stress compatibility equation, and the biharmonic equation simplified t...
متن کاملA new fast multipole boundary element method for solving large-scale two-dimensional elastostatic problems
A new fast multipole boundary element method (BEM) is presented in this paper for large-scale analysis of two-dimensional (2-D) elastostatic problems based on the direct boundary integral equation (BIE) formulation. In this new formulation, the fundamental solution for 2-D elasticity is written in a complex form using the two complex potential functions in 2-D elasticity. In this way, the multi...
متن کاملFirst Principles Derivation of Displacement and Stress Function for Three-Dimensional Elastostatic Problems, and Application to the Flexural Analysis of Thick Circular Plates
In this study, stress and displacement functions of the three-dimensional theory of elasticity for homogeneous isotropic bodies are derived from first principles from the differential equations of equilibrium, the generalized stress – strain laws and the geometric relations of strain and displacement. It is found that the stress and displacement functions must be biharmonic functions. The deriv...
متن کاملA Comparative Study of Multipole and Empirical Relations Methods for Effective Index and Dispersion Calculations of Silica-Based Photonic Crystal Fibers
In this paper, we present a solid-core Silica-based photonic crystal fiber (PCF) composed of hexagonal lattice of air-holes and calculate the effective index and chromatic dispersion of PCF for different physical parameters using the empirical relations method (ERM). These results are compared with the data obtained from the conventional multipole method (MPM). Our simulation results reveal tha...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Adv. Comput. Math.
دوره 42 شماره
صفحات -
تاریخ انتشار 2016